

Jose Giovanni Concha Lazarinos

Tratamento de Revestimentos Gastos de Cuba Eletrolítica da Indústria de Alumínio

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio.

> Orientador: Francisco José Moura Co-orientador: André Bastos Cardoso

Rio de Janeiro, Abril 2007

Jose Giovanni Concha Lazarinos

Tratamento de Revestimentos Gastos de Cuba Eletrolítica da Indústria do Alumínio

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. PhD. Francisco José Moura Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

> M.Sc. André Bastos Cardoso Co-Orientador Engenheiro Especialista – Valesul Alumínio S.A.

Dr. José Cláudio Moura Gerente - Termoquip Energia Alternativa Ltda.

Prof. PhD. Roberto Jose de Carvalho Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 20 de Abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jose Giovanni Concha Lazarinos

Graduo-se como Primeiro de sua Turma na Escola Profissional de Engenharia Química - Universidade Nacional San Agustín de Arequipa (UNSA) – Peru, 2003. Trabalhou e foi estagiário na Companhia de Minas Buenaventura (2004) – Peru, em 2003 foi estagiário em Phelps Dodge Mining Company (Peru).

Ficha Catalográfica

Concha Lazarinos, Jose Giovanni

Tratamento de revestimentos gastos de Cuba eletrolítica da indústria de alumínio / Jose Giovanni Concha Lazarinos ; orientadores: Francisco José Moura, André Bastos Cardoso. – 2007.

151 f. : il. (col.) ; 30 cm

Dissertação (Mestrado em Ciência dos Materiais e Metalurgia)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007. Inclui bibliografia

1. Ciência dos Materiais e Metalurgia – Teses. 2. Spent potliner. 3. Caracterização. 4. Cianetos. 5. Fluoretos. 6. Gaseificação. I. Moura, Francisco José. II. Cardoso, André Bastos. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. IV. Título.

CDD: 669

PUC-Rio - Certificação Digital Nº 0511123/CA

A Deus e a minha querida família.

Agradecimentos

Ao Professor Francisco José Moura e ao Eng. André Bastos Cardoso, pela sua amizade, apoio e orientação na realização deste trabalho. À Valesul Alumínio S.A. pelo o fornecimento do resíduo (SPL). A toda a equipe de Termoquip Energia Alternativa Ltda., em especial ao Dr. José Cláudio Moura e ao Eng. Themístocles Rocha, por brindar suas instalações e assessoria na realização dos experimentos de gaseificação. A todos os professores da Metalurgia do DCMM-PUC-Rio, por transmitir-me seus conhecimentos e experiências. A CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado. A Claudia Vizcarra por estar comigo nos bons e maus momentos. Ao Professor Luiz Carlos Bertolino (FFP - UERJ) pela sua ajuda nas análises de microscopia ótica. Ao Dr. Marcos Henrique de Pinho pela sua ajuda nas análises de MEV. Ao Ronaldo P. da Silva pela sua ajuda nos experimentos de Raios-X. Ao Dr. Mauricio Monteiro e ao Técnico Nelson pela sua ajuda na realização da análise termogravimétrica. A Luzinete P. de Araújo, Carlos Queiroz, Heitor N. Guimarães e a todos os funcionários do DCMM pela sua ajuda. Em geral a todas as pessoas que me colaboraram em forma direta e indireta na realização deste trabalho.

Resumo

Concha Lazarinos, Jose Giovanni. **Tratamento de Revestimentos Gastos de Cuba Eletrolítica da Indústria de Alumínio.** Rio de Janeiro, 2007. 151 p. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

O Revestimento Gasto de Cuba, comumente conhecido pelas suas siglas em inglês como SPL (spent potliner), é um resíduo gerado na indústria de alumínio, indicado como o maior problema ambiental ligado a esta indústria. O SPL é formado por duas frações: carbonácea e refratária. Segundo a Norma Brasileira NBR 10004, o SPL é classificado como resíduo perigoso (K088) devido ao fato de possuir elevadas concentrações de cianetos (complexos). O presente trabalho busca desenvolver métodos para melhorar o gerenciamento do SPL, principalmente fazer uma caracterização química de acordo com as leis Brasileiras. E também desenvolver um método para tratar a fração carbonácea do SPL. Segundo as análises químicas, apenas a fração carbonácea do SPL foi classificada como Resíduo Classe I (resíduo perigoso), enquanto os materiais refratários foram classificados como Resíduo Classe II-A (resíduo não perigoso). A classificação e segregação do SPL permitiram à Valesul a recuperação e reutilização deste resíduo, manifestando-se em ganhos econômicos estimados em R\$60000/ano e na redução de 4% na geração de SPL. A fração carbonácea do SPL foi caracterizada mediante o uso de microscopia ótica, MEV/EDS, DRX e TG. A fração carbonácea foi tratada em um Sistema de Gaseificação e Combustão Combinadas (GCC) em escala piloto. Neste processo a destruição dos compostos de cianetos foi maior que 86%. A temperatura no reator de combustão, inicialmente foi de 1000°C (operando com lenha), elevando-se para temperaturas maiores que 1250°C depois de alimentado o SPL, mostrando que é possível recuperar quantidades apreciáveis de energia. Neste processo atingiu-se a gaseificação de aproximadamente 21% do SPL. Os resultados mostraram que o tratamento do SPL por gaseificação é um processo alternativo, com potencial para seguir sendo desenvolvido. Mediante testes em forno tubular (escala de bancada) foi determinado que a volatilização de fluoretos do SPL ocorre em temperaturas maiores a 850°C.

Palavras chaves

Spent potliner, caracterização, cianetos, fluoretos, gaseificação.

Abstract

Concha Lazarinos, Jose Giovanni. **Treatment of Spent Potliner from Aluminium Industry.** Rio de Janeiro, 2007. 151 p. MSc. Dissertation – Department of Materials Science and Metallurgy. Pontifical Catholic University of Rio de Janeiro.

Spent Potliner (SPL) is a residue from the primary aluminium production. It is indicated as the major environmental problem in the aluminum industry. SPL is formed by two fractions: Carbonaceous and refractory. According to Brazilian Standards NBR 10004, the SPL is listed as hazardous waste (K088) because it contains high levels of cyanides (complex). The present work has as objective to develop methods to improve SPL management, mainly carrying out a chemical characterization according Brazilian regulations and to develop a method to treat the SPL carbonaceous fraction. According to the chemical analysis only a carbonaceous fraction was listed as Residuo Classe I (hazardous waste), while the refractory materials were listed as Residuo Classe II-A (no hazardous waste). The SPL classification and segregation allow Valesul to recovery and reuse this waste, it reveals in an earning calculated in R\$600000/year and 4% reduction of SPL generation. SPL carbonaceous fraction was characterized by optical microscopy, SEM/EDS, XRD and TGA. SPL carbonaceous fraction was treated in a Gasification and Combustion Combined System (GCC). In this process, cyanide destruction was higher than 86%. In the GCC process was registered an increase in the combustion reactor temperature, initially it was 1000°C (operating with wood) and after the SPL feeding it increased above 1250°C. In this process was obtained approximately 21% of SPL gasification. The results showed that the gasification is a potential alternative process to treat SPL and it should be improved. Tubular furnace tests (laboratory scale) for SPL combustion showed that the fluorides volatilization occurs at temperatures higher than 850°C.

Keywords

Spent potliner, characterization, cyanide, fluorides, gasification

Sumário

1 INTRODUÇÃO	18
2 OBJETIVOS	23
3 CATODO	24
3.1. Catodo da cuba eletrolítica	24
3.2. Constituintes do catodo	25
3.2.1. Carcaça	25
3.2.2. Tijolos refratários	26
3.2.3. Tijolos isolantes	27
3.2.4. Pasta catódica	27
3.2.5. Blocos de carbono	29
3.3. Vida útil do catodo	33
4 REVESTIMENTOS GASTOS DE CUBA	35
4.1. Aspectos gerais	35
4.2. Impregnação do banho eletrolítico no catodo	37
4.2.1. Absorção do sódio no catodo	41
4.3. Formação de cianetos no spent potliner	43
4.4. Características do spent potliner	45
4.4.1. Composição química	45
4.4.2. Propriedades físicas	47
4.5. Armazenagem do spent potliner	48
4.6. Tecnologias desenvolvidas para tratar o spent potliner	50
4.6.1. Separação física	50
4.6.1.1. Separação em meio denso	50
4.6.1.2. Processo de flotação	51
4.6.2. Processos de lixiviação	52
4.6.2.1. Processo de lixiviação alcalina – Alcan Primary Metal	52
4.6.2.2. Processo Cashman	53

4.6.2.3. Processo lixiviação ácida e precipitação	54
4.6.3. Processos térmicos	55
4.6.3.1. Processos de temperaturas médias: 500 – 850°C	55
4.6.3.1.1. Processo em forno rotativo - Reynolds Metals Company	56
4.6.3.1.2. Processo de incineração e lixiviação - Atlantic Richfield	
Company	57
4.6.3.1.3. Processo em forno rotativo - Regain Technologies	58
4.6.3.1.4. Processo COMTOR - Comalco Aluminium Limited	59
4.6.3.2. Processos térmicos a alta temperatura: 1100 – 1300°C	60
4.6.3.2.1. Processo de vitrificação Vortec - Ormet Corporation	60
4.6.3.2.2. Processo Ausmelt - Alcoa, Portland	61
4.6.3.2.3. Processo em forno de plasma-Columbia Ventures Corporatio	n62
4.6.3.2.4. Processo em forno rotativo - Aluminium Company of America	63
4.6.3.2.5. Processo de gaseificação - Global Environmental	64
4.6.3.2.6. Co - processamento em fornos de clínquer	64
4.7. Custos de gerenciamento do spent potliner	66
5 GASEIFICAÇÃO	68
5 GASEIFICAÇÃO 5.1. Aspectos gerais	68 68
5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador	68 68 71
5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo	68 68 71 72
5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i>	68 68 71 72 72
5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i>	68 68 71 72 72 73
5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado	68 68 71 72 72 73 77
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 	68 68 71 72 72 73 77
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS	68 68 71 72 72 73 77 79
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra	 68 68 71 72 72 73 77 79 79 79
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento	 68 68 71 72 72 73 77 79 79 80
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento 6.2.1. Descrição da tecnologia GCC – Termoquip	 68 68 71 72 73 77 79 79 80 80
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento 6.2.1. Descrição da tecnologia GCC – Termoquip 6.2.1.1. Sistema de alimentação	 68 68 71 72 73 77 79 79 80 80 80
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento 6.2.1. Descrição da tecnologia GCC – Termoquip 6.2.1.1. Sistema de alimentação 6.2.1.2. Reator de gaseificação	 68 68 71 72 73 77 79 79 80 80 80 80
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento 6.2.1. Descrição da tecnologia GCC – Termoquip 6.2.1.1. Sistema de alimentação 6.2.1.2. Reator de gaseificação 6.2.1.3. Câmara de combustão	 68 68 71 72 73 77 79 79 80 80 80 80 80 83
 5 GASEIFICAÇÃO 5.1. Aspectos gerais 5.2. Gaseificador 5.2.1. Gaseificador de leito fixo 5.2.1.1. Gaseificador <i>updraft</i> 5.2.1.2. Gaseificador <i>downdraft</i> 5.2.2. Gaseificador de leito fluidizado 6 MATERIAIS E EQUIPAMENTOS 6.1. Amostra 6.2. Equipamento 6.2.1. Descrição da tecnologia GCC – Termoquip 6.2.1.1. Sistema de alimentação 6.2.1.2. Reator de gaseificação 6.2.1.3. Câmara de combustão 6.2.2. Parâmetros operacionais do sistema GCC–Termoquip para a 	68 68 71 72 73 77 79 79 80 80 80 80 80 83

6.2.3. Forno tubular	85
7 MÉTODOS	86
7.1. Caracterização dos revestimentos gastos de cuba	86
7.1.1. Composição química	86
7.1.2. Microscopia ótica	86
7.1.3. Microscopia eletrônica de varredura	87
7.1.4. Difração de Raios-X	87
7.1.5. Análise termogravimétrica	88
7.2. Testes em escala de bancada	88
7.2.1. Testes em forno de mufla	89
7.2.2. Testes em forno tubular	89
7.2.2.1. Temperatura de reação	89
7.2.2.2. Tempo de residência	89
7.3. Teste em escala piloto	90
7.3.1. Processo de gaseificação	90
7.3.2. Avaliação da destruição de cianetos	91
7.3.3. Avaliação da volatilização de fluoretos	92
7.3.4. Avaliação do pH do SPL e das cinzas	92
8 APRESENTAÇÃO E ANÁLISES DOS RESULTADOS	93
8.1. Gerenciamento dos revestimentos gastos de cuba	93
8.2. Caracterização dos revestimentos gastos de cuba	99
8.2.1. Composição química	99
8.2.2. Microscopia ótica	100
8.2.3. MEV/EDS	101
8.2.4. Difração de Raios-X	105
8.2.5. Análise termogravimétrica	106
8.3. Gaseificação de SPL em reator GCC - escala piloto	111
8.3.1. Temperatura na câmara de combustão	115
8.3.2. Caracterização das cinzas do processo GCC	117
8.3.2.1. Composição química das cinzas	117
8.3.2.2. Microscopia ótica	117
8.3.2.3. MEV/EDS	118

8.3.2.4. Difração de Raios-X	120
8.3.3. Avaliação das cinzas do processo GCC	121
8.3.4. Queima de uma partícula de SPL	125
8.3.5. Análises da destruição do cianeto	126
8.3.6. Análises da volatilização de fluoretos	128
8.4. Testes em mufla	136
8.5. Testes em forno tubular	137
8.5.1. Efeito do tempo de residência	137
8.5.2. Efeito da temperatura	138
9 CONCLUSÕES	142
~	
10 RECOMENDAÇÕES PARA TRABALHOS FUTUROS	145
	1.10
11 REFERENCIAS	146

Lista de figuras

Figura 1. Produção Brasileira de Alumínio primário do ano 2006 (ABAL,	,
2007)	18
Figura 2. Fluxograma do processo produtivo do Alumínio (International	
Aluminium Institute)	19
Figura 3. Desenho esquemático de uma Cuba eletrolítica de anodo pré-	-
cozido (Madshus, 2005)	20
Figura 4. Principais materiais constituintes de uma cuba eletrolítica	
(Valesul)	24
Figura 5. Seção transversal do catodo europeu (esquerda) e americano)
(direita) – (Sancho <i>et al.</i> 1994)	25
Figura 6. Estrutura do grafite (Brisson et al. 2005)	29
Figura 7. Representação do re-ordenamento que se produz em um	
material carbonoso quando é submetido ao aquecimento (Brisson et al.	
2005)	30
Figura 8. Evolução das fases dos compostos fundidos (% peso) com o	
tempo, no revestimento. (Lossius e Oye 2000)	38
Figura 9. Distribuição de fases em um catodo de carbono SG em 996 d	ias
de operação (%peso) (Lossius e Oye, 2000)	39
Figura 10. Expansão dos blocos catódicos devido ao sódio (Brisson et a	al.
2005)	41
Figura 11. Distribuição de temperaturas (°C) em uma cuba com catodo	
grafítico com isolamento. (Sancho <i>et al.</i> 1994)	44
Figura 12. Área de armazenagem do spent potliner (Alcoa, 1998)	49
Figura 13. Separador em meio denso Tri-Flo.	51
Figura 14. Fluxograma do processo da Reynolds Metals para tratament	0
do SPL. (Chamania, 2000)	57
Figura 15. Fluxograma do processo Regain Technologies para tratamen	nto
do SPL (Cooper <i>et al.</i> 2006)	59
Figura 16. Fluxograma do processo Ausmelt para o tratamento do SPL	
(Mansfield, 2002)	62

Figura 17. Fluxograma do processo Columbia Ventures para o tratam	ento
do SPL (Morgenthaler <i>et al.</i> 1993)	63
Figura 18. Fluxograma do co-processamento de SPL em fornos de	
clínquer	65
Figura 19. Processos de conversão térmica e os produtos gerados	
(Belgiorno <i>et al.</i> 2003)	71
Figura 20. Gaseificador de contracorrente up-draft - Perfil de tempera	ıtura
e zonas de reação (McKendry, 2002)	73
Figura 21. Estágios do processo de gaseificação.	74
Figura 22. Gaseificador de co-corrente - downdraft (McKendry, 2002)	75
Figura 23. Área destinada para armazenagem de spent potliner	79
Figura 24. Sistema GCC - Termoquip - Seção transversal (Moura et	al.
1998)	81
Figura 25. Fotografia do sistema piloto de GCC – Termoquip.	84
Figura 26. Sistema do forno tubular	85
Figura 27. Foto do gaseificador GCC (queima de lenha para no início	do
processo de gaseificação)	91
Figura 28. Perfil do Revestimento de uma cuba Reynolds P-19 (latera	le
transversal) – Valesul	93
Figura 29. Perfil do revestimento de uma cuba J-20 (Valesul)	94
Figura 30. Fotografia de uma cuba eletrolítica danificada	95
Figura 31. Fotografia da autopsia de uma cuba eletrolítica danificada	96
Figura 32. Classificação do spent potliner primeiro corte (esquerda) e	
segundo corte (direita)	98
Figura 33. Micrografia de uma partícula de SPL de primeiro corte	100
Figura 34. Micrografia de SPL de primeiro corte com infiltração de bar	וho
eletrolítico	101
Figura 35. Micrografia de SPL	101
Figura 36. Análise elementar por EDS do SPL - spectrum 1	102
Figura 37. Análise elementar por EDS do SPL - spectrum 2	102
Figura 38. Análise elementar por EDS - spectrum 3	103
Figura 39. Micrografia de SPL	104
Figura 40. Análise elementar por EDS - spectrum 1	104

Figura 41. Análise elementar por EDS da segunda seção - spectrum .	2 e
3	105
Figura 42. DRX do spent potliner de primeiro corte	106
Figura 43. Curvas da análise TG e DTG do SPL, primeira etapa (T=60) —
600°C, V _{Ar} = 50mL/min)	107
Figura 44. Curvas da análise TG e DTG do SPL, segunda etapa (T= 6	00 -
900°C, V _{O2} =50ml/min)	109
Figura 45. Curvas agrupadas da análise TG-DTG das duas primeiras	
etapas (Pirólises/ Combustão)	110
Figura 46. Curva de TG do spent potliner da etapa isotérmica (900°C)	111
Figura 47. Spent potliner de primeiro corte usado no processo de	
gaseificação.	112
Figura 48. Partículas de SPL sinterizadas na grelha	113
Figura 49. Cinzas do SPL gaseificado	114
Figura 50. Variação da temperatura na câmara de combustão	115
Figura 51. Fotografia da câmara de combustão durante o processame	ento
do SPL.	116
Figura 52. Micrografia de uma partícula de SPL com camada	118
Figura 53. Micrografia da camada branca formada na gaseificação do	
SPL	118
Figura 54. Análise elementar por EDS camada branca-spectrum 1 e 3	119
Figura 55. Análise elementar por EDS camada branca - spectrum 2	119
Figura 56. DRX das cinzas do SPL do processo GCC	120
Figura 57. DRX da camada branca formada durante a gaseificação do)
SPL.	121
Figura 58. Partícula de SPL gaseificada, apresentando camada.	122
Figura 59. Partículas de SPL sinterizadas durante o processo de	
gaseificação.	124
Figura 60. Alumínio fundido durante o processo de gaseificação.	125
Figura 61. Teste de queima com maçarico de uma partícula de SPL	126
Figura 62. Diagrama de estabilidade da oxidação do cianeto de sódio	127
Figura 63. Diagrama de estabilidade do processo de piro-hidrolises de	;
fluoretos.	130

30

Figura 64. Diagrama de estabilidade para a produção de HF via reaçã	io
de fluoretos e H ₂	131
Figura 65. Diagrama de estabilidade da reação do ácido fluorídrico co	m a
alumina.	134
Figura 66. Diagrama de estabilidade das reações do óxido de cálcio o	om
os principais compostos de flúor contidos no SPL	135
Figura 67. Fotografia das amostras queimadas em mufla elétrica.	137
Figura 68. Efeito do tempo de residência na perda de peso do SPL	138
Figura 69. Efeito da temperatura na perda de massa durante a queima	a do
SPL.	139
Figura 70. DRX do SPL sem gaseificar e das cinzas do testes em form	10
tubular	141

Lista de tabelas

Tabela 1. Principais propriedades dos tijolos refratários	26
Tabela 2. Propriedades típicas dos materiais isolantes	27
Tabela 3. Formulação granulométrica do antracito moído	28
Tabela 4. Propriedades típicas da pasta catódica	28
Tabela 5. Propriedades físicas típicas dos principais materiais cart	onosos
usados nos blocos catódicos	32
Tabela 6. Comparação qualitativa entre os principais materiais	
carbonosos usados nos blocos catódicos	32
Tabela 7. Principais reações químicas que ocorrem no catodo.	40
Tabela 8. Composição química do SPL - Metais	46
Tabela 9. Composição química do SPL - Óxidos	46
Tabela 10. Propriedades físicas dos materiais dos revestimentos o	le
cuba	47
Tabela 11. Dureza dos materiais constituintes do SPL	47
Tabela 12. Custos relacionados ao tratamento de SPL	67
Tabela 13. Diferenças significantes entre gaseificadores de leito fi	хо е
gaseificadores de leito fluidizado	71
Tabela 14. Peso unitário de cada material por cuba	95
Tabela 15. Composição química dos cortes do SPL	97
Tabela 16. Classificação do SPL conforme a NBR 10004	97
Tabela 17. Composição química do SPL de primeiro corte	99
Tabela 18. Composição química das cinzas	117
Tabela 19. Possíveis mecanismos de formação de HF durante a	
gaseificação do SPL	132

As pessoas capazes nunca acham que já estão jogando o melhor possível. Mas dão o máximo de si para chegar lá!

Jack Welch